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Abstract

Here, we present two-dimensional numerical calculations of the head-on and off-centre binary collision dynamics of

equal-sized, van der Waals liquid drops using the method of smoothed particle hydrodynamics (SPH). Because of the

planar geometry used to represent the drops, the simulations apply to the collision of two infinitely long cylinders. The

outcome of coalescence, in which two drops combine permanently, is studied only for low energy impact collisions with

Reynolds (Re) and Weber (We) numbers in the ranges 23 6 Re 6 68 and 1 6We 6 10, respectively. In particular, the

effects of varying both the impact velocity and the impact parameter on the outcome of permanent coalescence are

investigated.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The phenomenon of binary coalescence, in which two

liquid drops combine and generate one single drop via

an inelastic collision, is an essential feature in many

industrial and natural processes and therefore its predic-

tion and control is of great practical importance. For

instance, many applications of interest to chemical engi-

neers include liquid–liquid extraction, emulsification,

spray coating, hydrocarbon fermentation and waste

treatment [1–3]. In particular, the coalescence of oil

drops is relevant to many industrial and environmental

clean-up operations. The success of liquid–liquid extrac-

tion operations depends on the subsequent coalescence
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of the dispersed drops which have deliberately been

formed to enhance the rate of mass transfer [4]. More-

over, the coalescence of the emulsions formed during

alkaline flooding operations is necessary to produce a

stable oil bank and achieve enhanced oil recovery. In

the petroleum refineries, coalescence of fine oil mist is at-

tained using porous coalescers, settlers, chemicals and

electric fields to break up the emulsions. The collision

and coalescence of liquid drops in Diesel engine sprays

is also of great interest because coalescence affects the

size of the drops in the engine cylinder, which in turn

may affect its performance and emission characteristics

[3]. Also, the coalescence of liquid drops plays a funda-

mental role in metereological studies of raindrop and

precipitation formation in warm-based and maritime

clouds [5], and in processing of food products and other

emulsions.

When a pair of drops collide in a gas–liquid or

liquid–liquid dispersion, the interfaces separating the

drops from the continuous phase distort to form a flat
ed.
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lamella, which must drain to a certain critical thickness

before it finally ruptures leading to coalescence [6–8].

The rate of film drainage will then determine the rate

of coalescence. Because of its complexity, the study of

this three-dimensional (3D) free-surface flow has been

mostly limited to experiments of controlled collisions be-

tween pairs of drops in free flight. Extensive experimen-

tal investigation of the binary collision dynamics of

water and fuel droplets can be found in the literature

for a range of drop size ratios, Reynolds numbers, We-

ber numbers and impact parameters [9–14]. It is gener-

ally accepted that when two drops collide, there are

several possible outcomes, depending on the kinetic en-

ergy of the collision, the sizes of the impinging drops, the

impact parameter and the fluid properties. All these fac-

tors can be parametrized in terms of the dimensionless

Reynolds number (Re), Weber number (We) and impact

parameter (v), which for equal-sized drops are defined as

Re ¼ qvrelD
g

; We ¼ qv2relD
r

; v ¼ X
D
; ð1Þ

where q, g and r designate the density, shear viscosity
and surface tension of the drop fluid, respectively, vrel
is the relative velocity of the colliding drops, D is their

diameter and X is the projection of the separation dis-

tance between the centres of the colliding drops normal

to the relative velocity vector and gives a measure of the

degree to which the collision is off-centre.

For near head-on collisions with increasing We, the

impact can result in permanent coalescence, bouncing,

permanent coalescence again and temporal coalescence

followed by reflexive separation into two or more drops.

In particular, for equal-sized water drops colliding

head-on in one atmosphere air, reflexive separation into

two drops may first occur atWe = 19 [12]. This limit has

been found to depend on the liquid and surrounding gas

pressure. For instance, Qian and Law [14] report limits

of We � 20–40 for hydrocarbon droplets colliding in
gas environments at different pressures, while Mench-

aca-Rocha et al. [15] found even higher critical values

(We P 80) for mercury drops colliding in atmospheric

air. As We is further increased, reflexive separation

may result in a string of three or more drops. The reader

is referred to the review article by Orme [16] for a com-

plete discussion of the experimental data for both water

and fuel drop collisions. Further experiments conducted

by Willis and Orme [17,18] have shown that for 10- and

30-cSt oil drops colliding head-on in a vacuum environ-

ment, the collisions always resulted in permanent coales-

cence for We up to about 350 and 2840, respectively,

which are on the order of 10–100 times higher than

the critical value for water drop collisions in a standard

atmosphere. It is believed that this increase in the critical

Weber number is due to the fact that there is no air pres-

sure to aerodynamically disrupt the thin films or liga-

ments generated in the collision.
In general, for off-centre and grazing collisions four

distinct types of outcome have been categorized, namely

permanent coalescence and bouncing at low and moder-

ate We, reflexive separation for higher We and low

impact parameters (60.4) and stretching separation for

both higher We and higher impact parameters. In gen-

eral, when two liquid drops of comparable size collide

nearly head-on, they coalesce to form a transient circu-

lar disk-like drop which then contracts radially. The ra-

dial influx is driven by the surface tension forces and

pushes the liquid out of the disk centre, forming a long

cylinder of rounded ends. As We is increased, a critical

point is reached beyond which the liquid cylinder breaks

up into two drops. This critical point marks the onset of

the type of collision outcome called reflexive or influx

separation. Conversely, when two drops collide off-cen-

tre at high impact parameters, only a portion of them

comes in direct contact, resulting in a well-defined region

of interaction. As the bulk of the drops tend to flow in

the direction of their initial trajectory, the region of

interaction stretches. If either We or the impact param-

eter is increased, the ratio of the drop kinetic energy,

which tries to stretch and separate the combined mass,

over the surface energy of the interaction region, which

tries to hold the two drops together, also increases until

a critical value is achieved beyond which stretching sep-

aration occurs. In the latter case, as the impact parame-

ter is further increased, the stretched interaction region

connecting the two receding drops may eventually break

up into one or more satellite droplets [12]. In passing, we

recall that head-on and off-centre binary collisions with

very high relative velocities may result in shattering sep-

aration in which the colliding drops disintegrate into a

cluster of much smaller droplets.

In spite of the wealth of existing experimental results,

numerical simulations aimed at studying the dynamics

of the collision and coalescence of liquid drops are in-

deed very scarce. A first attempt to simulate the head-

on collision of equal-sized water drops forWe < 5, using

the marker-and-cell method, was reported by Foote [19].

Further numerical studies were made by Poo and Ash-

griz [20], who employed a volume-of-fluid scheme to fol-

low the dynamics of binary drop collision in two-space

dimensions (2D). Simulations of the head-on collision

of two drops were also carried out by Nobari et al.

[21], who used a front tracking method to investigate

the boundary separating the occurrence of bouncing

and permanent coalescence. A brief report on the

numerical simulation of drop collisions was published

by Rieber and Frohn [22], which mainly discusses the

numerical techniques and does not provide much details

on the collision behaviour. Mashayek et al. [23] studied

the axisymmetric coalescence produced by the collision

of two liquid drops using a Galerkin finite element

method in combination with the spine-flux scheme for

tracking the free surface. In particular, they investigated
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the effects of varying Reynolds number (Re), impact

velocity, drop size ratio and internal circulation on binary

coalescence for low We(�1). More recently, Inamuro
et al. [24] applied a lattice Boltzmann multiphase method

to simulate the binary collision of liquid drops in ambient

gas at Re = 2000 for 20 <We < 80 and varied impact

parameters. In particular, they studied the occurrence

of permanent coalescence, reflexive separation for low

impact parameters and stretching separation for high

impact parameters.

Here, we apply for the first time the method of

smoothed particle hydrodynamics (SPH) to simulate

the collision dynamics and coalescence of equal-sized

van der Waals liquid drops in 2D planar geometry.

Therefore, the simulations apply to the coalescence of

two infinitely long cylinders. In particular, we study

how the shape of the coalesced cylindrical drops evolves

with time and compare the evolution with that observed

in actual experiments involving the collision and coales-

cence of spherical drops. In common with Mashayek

et al. [23], we consider only low impact energy collisions

with We 6 10 in a vacuum environment. In contrast

with them, we include in a self-consistent manner the ef-

fects of bulk viscosity, viscous heating and heat conduc-

tion, and allow for both head-on and off-centre binary

collisions. Since SPH is a grid-free method, the results

will be independent of any prescribed coordinate system

compared to previous finite difference and finite element

based simulations. This makes SPH a scheme suitable to

follow large surface deformations as in problems involv-

ing free surface [25] and interfacial [26,27] flows. Here,

we show that when SPH is coupled with the allowance

for molecular cohesive forces through a van der Waals

equation of state, free surfaces and gas–liquid interfaces

can be handled in a natural manner without the need of

either using free-surface tracking methods [28] or by-

hand inclusion of the surface tension forces in the equa-

tions of motion along with specialized expressions for

calculating the location of the interface and determining

its curvature [26,27].
2. Basic formulation and methodology

The general equations describing the motion of a

heat conducting, viscous fluid can be written using the

standard index-summation convention as

dq
dt

þ q
ovk

oxk
¼ 0; ð2Þ

q
dvi

dt
¼ oSij

oxj
ð3Þ

and

q
du
dt

¼ Sij ov
i

oxj
� oqk

oxk
; ð4Þ
where q is the mass-density, vi is the ith component of
the fluid velocity, u is the specific internal energy, Sij

are the components of the stress tensor, qk is the kth

component of the heat flux and xj is the jth Cartesian

component of the position vector~r. Here, d/dt = o/ot +

vio/oxi denotes the Lagrangian time derivative. The

stress tensor is defined according to

Sij ¼ �pdij þ rij; ð5Þ

where p is the internal pressure, dij is the unit tensor and
rij is the viscous stress tensor given by

rij ¼ g
ovi

oxj
þ ovj

oxi

� �
þ f � 2

d
g

� �
ovk

oxk
dij; ð6Þ

with g and f being the coefficients of shear and bulk vis-
cosity, respectively. The constant parameter d specifies

the number of spatial dimensions, with d = 2 for two

dimensions and d = 3 for three dimensions. The heat flux

is assumed to obey Fourier�s law of heat conduction and
is given by

qk ¼ �j
oT
oxk

; ð7Þ

where j is the coefficient of thermal conductivity and T
is the fluid temperature. For a van derWaals fluid model,

Eqs. (2)–(4) are closed by the constitutive relations

p ¼
�kBqT
1� �bq

� �aq2 ð8Þ

and

u ¼ n
2
�kBT � �aq; ð9Þ

for the pressure and specific internal energy, respec-

tively. In these equations, n is the number of degrees
of freedom for the molecules, �kB ¼ kB=m, �b ¼ b=m and

�a ¼ a=m2, where kB is the Boltzmann�s constant, b is a
constant due to the finite volume of the molecules, a is

a measure for the forces of cohesion between neighbour-

ing molecules and m is the mass of the molecules. Here,

we take n = 2, corresponding to spherical molecules that
are allowed to move only in the (x,y)-plane. Note that

for any inner volume element the cohesive forces

approximately cancel each other because they are on

average directionally uniform. However, the same is

not true for a volume element adjacent to the surface,

where they add up to a resultant pressure in the direction

of the inward surface normal. It is precisely this contri-

bution which is responsible for the capillarity of the free

liquid surface. In this model, thermo-dynamic stability

demands that the inequalities

�kBT > 2�aqð1� �bqÞ2 ð10Þ

and

q <
1
�b

ð11Þ
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must be satisfied. The first inequality ensures that

the specific heats, the isentropic bulk modulus, Ks =

q(op/oq)s, and the product between the thermal expan-
sion coefficient (a) and the Grüneisen coefficient (C),

aC ¼ � 1

q2
oq
oT

� �
p

op
ou

� �
q

;

are all positive quantities. The second inequality guaran-

tees that the kinetic pressure, given by the first term on

the right-hand side of Eq. (8), is always positive. The

combination of these constraints along with the positive-

ness of the density, q, temperature, T, and Grüneisen
coefficient, C, define the domain of the phase space for
this van der Waals fluid model.

The SPH formalism used for solving Eqs. (2)–(4) is

described in full by Sigalotti et al. [29] and Meleán

et al. [30]. Here, we present only a brief description of

the method, and refer the reader to the above papers

for more details. SPH is a fully Lagrangian particle

method used for computation of discontinuous flows

with large deformations. In addition to Eqs. (2)–(4), it

also solves the equation

dxi

dt
¼ vi ð12Þ

for the particle�s position. The formal discretization of
Eqs. (2)–(4) is obtained through the use of an interpolat-

ing kernel function that gives the estimate of the field

variables at a set of points (or particles) suitably chosen

to represent the fluid elements. In practice, mean values

of a quantity are expressed by the convolution integral

of the quantity with the kernel function, which is then

approximated as a sum over neighbouring points. For

instance, the density at each particle�s location is simply
assigned by

qa ¼
XN
b¼1

mbW ab; ð13Þ

where the subscripts denote particle labels, mb is the

mass of particle b, W ab ¼ W ðj~ra �~rbj; hÞ is a spherically
symmetric interpolating kernel, h is the parameter of

the kernel or smoothing length which determines the

spatial resolution and the sum is taken over N neigh-

bouring particles within a circle of radius 2h. Eq. (13)

is effectively a second-order approximation to Eq. (2)

and its use is of normal practice in standard SPH. With

the use of Eq. (13) to evaluate the density, the SPH rep-

resentations of Eqs. (3) and (4) must be written in sym-

metrized form to guarantee variational consistency

[29,31]. In this way, momentum preservation can be ad-

dressed properly. In this variationally consistent SPH

formulation, the expressions for the viscous forces on

the right-hand side of Eq. (3) involve only first-order

derivatives of the kernel through a straightforward eval-

uation of the components of the viscous stress tensor.
This allows the use of low-order kernels of compact sup-

port such as the cubic spline kernel originally proposed

by Monaghan and Lattanzio [32], without the occur-

rence of significant instability.

The position, velocity and specific internal energy of

the particles are advanced in time from step n to step

n + 1 in a two-stage procedure according to a modified

leapfrog integrator, which is accurate to second-order

in the timestep Dt = tn+1 � tn. In the first stage, a pre-

dicted estimate for particle �a� is obtained at the interme-
diate time tn+1/2 using the following sequence:

~xnþ1=2a ¼~xn�1=2a þ Dt~vna;

~vnþ1=2a ¼~vna þ
1

2
Dt

d~v
dt

� �n

a

;

unþ1=2a ¼ una þ
1

2
Dt

du
dt

� �n

a

.

ð14Þ

The values of ~xnþ1=2a are then used in Eq. (13) to get

the time-centred density, qnþ1=2
a , which in turn allows

the temperature to be updated using the unþ1=2a in Eq.

(9). Finally, the time-centred pressure is obtained by di-

rect evaluation of Eq. (8) with q and T replaced by qnþ1=2
a

and T nþ1=2
a , respectively. These predicted estimates are

then employed to compute the time-centred accelera-

tion, ðd~v=dtÞnþ1=2a , along with the viscous and heat con-

duction contributions to the time rate of change of the

specific internal energy, ðdu=dtÞnþ1=2a . In the second stage,

final updates of the particle�s positions, velocities and
specific internal energies are obtained as follows:

~xnþ1a ¼~xna þ Dt~vnþ1=2a ;

~vnþ1a ¼~vna þ Dt
d~v
dt

� �nþ1=2

a

;

unþ1a ¼ una þ Dt
du
dt

� �nþ1=2

a

;

ð15Þ

from which updated densities, temperatures and pres-

sures are computed from Eqs. (13), (9) and (8), respec-

tively. For SPH particles, the timestep in the above

explicit scheme is limited by the Courant condition for

numerical stability [34]. However, for the model calcula-

tions of this paper accurate results were obtained using a

constant value of Dt(=0.005), which was chosen to be as
small as necessary to guarantee stability.

The present scheme has been proved to perform

equally well for compressible flows at moderate and high

Re and incompressible flows at very low Re(	1) without
resorting to any trick or modification [29]. Further test-

ing of the method on the formation of a stable van der

Waals liquid drop has shown that it is highly susceptible

to unstable behaviour in the tensile regime. Specifically,

for this particular test case the tensile instability appears

in the form of unphysical concentric ring-like clusterings

of particles in the structure of the forming drop [30].

However, the instability is completely removed by add-
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ing an artificial viscous force and energy heating term to

the SPH equations of motion and internal energy

according to the prescriptions given by Gray et al.

[33]. Complete details of the form of the artificial stress

and corrected SPH equations can be found in Meleán

et al. [30].
3. Liquid drop and binary collision models

In this paper, we perform exploratory SPH calcula-

tions of the binary collision and subsequent coalescence

of infinitely long cylindrical drops of equal radius. The

colliding drops are assumed to be physically identical

and in thermo-mechanical equilibrium. The drop model

configuration is constructed numerically by adopting the

same parameters used by Nugent and Posch [35] and

Meleán et al. [30]. That is, we take m = 1, �a ¼ 2,
�b ¼ 0.5 and �kB ¼ 1 in Eqs. (8) and (9). These reduced
units leads to a van der Waals fluid whose critical point

occurs for qcr = 2/3, pcr = 8/27 and Tcr = 32/27 [36].

When written in terms of the reduced variables q !
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Fig. 1. (a) Stable circular drop configuration used for the binary collis

energies within the drop during the evolution leading to the equilibriu

and (d) temperature variations as functions of the distance r from t
�K ¼ K=10 and �U ¼ ðU þ 6000Þ=10 are plotted instead of K and U in
q/qcr, p! p/pcr and T! T/Tcr, Eq. (8) expresses the

law of corresponding states, that is, it contains only

the above reduced variables and not quantities pertain-

ing to a given substance [36]. It is therefore valid for

any fluid to which Eq. (8) is applicable. In other words,

the reduced isotherms are the same for all substances.

The coefficients of thermal conductivity, shear and bulk

viscosity in reduced units are taken to be j = 5, g = 1
and f = 0.1, respectively. This large value of j serves
to obtain a fast temperature adjustment, reducing den-

sity fluctuations in the drop. In addition, a value of

g = 1 corresponds to a liquid with moderate viscosity
[35]. We choose the (x,y)-plane to represent the fluid

and start the evolution from a square array of 1936

SPH particles, of equal mass (ma = m = 1), placed at

the vertices of a regular square Cartesian mesh of total

side length Lm = 32.25. With this choice, the interparti-

cle distance along the x- and y-directions is 0.75. The

particles were given a smoothing length h = 3 and an ini-

tial uniform temperature T = 0.2. At this subcritical

value, a condensed circular drop with no external atmo-

sphere is formed as shown in Fig. 1(a).
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Fig. 2. Schematic of (a) the head-on and (b) off-centre binary

collision models as viewed in the reference frame in which one

of the two drops is at rest. The symbols used in this figure are as

defined in the text.
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As in Nugent and Posch [35], surface tension effects

at the drop boundary are simulated by considering the

cohesive pressure, ��aq2, in Eq. (8) separately from all

other forces. This term contributes with an attractive

central force between the SPH particles and produces

an acceleration and heating given by

d~va
dt

¼ 2�a
XN
b¼1

mbraW H
ab ð16Þ

and

dua
dt

¼ 2�a
XN
b¼1

mb ~vb �~vað Þ � raW H
ab; ð17Þ

respectively, where $a is the gradient operator at the

location ~ra of particle �a� and W H
ab ¼ W ðj~ra �~rbj;HÞ is

the same interpolating kernel function employed in Eq.

(13), except that it now depends on the smoothing range

H instead of h. We note that the form of Eq. (16)

strongly resembles that employed to estimate the surface

normals for calculating interfacial curvatures with SPH

using the continuum-surface-force method [26]. The

choice of H is determined by stability considerations.

In particular, stable and circular drops, as the one de-

picted in Fig. 1(a), are produced when H P 2h, that is,

when the interaction range of the attractive cohesive

forces is assumed to exceed that of all other smoothed

forces appearing in the SPH equations of motion. A sim-

ilar observation also led to a substantial improvement of

the interface stability properties with the continuum-sur-

face-force method employed by Morris [26]. The forces

represented by Eq. (16) largely cancel within the drop

volume, except for a small strip H around the drop sur-

face where particles are accelerated in the direction of

the inward surface normal. In this way, the right-hand

side of Eq. (16) acts as a net surface tension force due

to the local curvature. Its main effect is to smooth out

regions of high curvature in an attempt to reduce the

total surface area and hence the surface energy.

Also displayed in Fig. 1 is the time variation of the

internal kinetic (K) and internal (U) energy during the

evolution leading to the formation of the stable drop

(Fig. 1(b)) and the smoothed density (Fig. 1(c)) and tem-

perature (Fig. 1(d)) profiles for the final equilibrium

drop shown in Fig. 1(a). The circular shape of the stable

drop is one effect of the rising surface tension, r, due to
the pressure difference at the interface separating the

liquid drop from the surrounding vacuum. The circu-

larly ordered outermost particles evident in Fig. 1(a)

illustrate the finite thickness of the interface surrounding

the drop. The drop has a central density qc � 1.8 and
radius R � 18.2 in reduced units. With these parameters
we may then compute r using Laplace formula

jpðr ¼ 0Þ � pðr ! 1Þj ¼ r
R
; ð18Þ
where p(r = 0) and p(r!1) = 0 are the pressures in the
drop centre and far away from it, respectively. Since

p(r = 0) � �0.39 for this drop, Laplace formula yields
r � 7.1. With these parameters, the Ohnesorge number,
Z = 16g/(qRr)1/2, representing the ratio of the viscous
force to the square root of the product of the inertial

and surface tension forces is Z � 1.05 for this drop
model.

Following Ashgriz and Poo [12], a model of binary

drop collision can be described by the liquid-drop den-

sity q, the shear viscosity g, the surface tension r, the
diameters D1 and D2 of the colliding drops and their

relative velocity ~vrel ¼~v1 �~v2. For simplicity, here we
consider only collisions between equal-sized drops

(D1 = D2 = D) for which j~v1j ¼ j~v2j ¼ v, where v is as-

sumed to be a constant. From the above fluid parame-

ters we can construct the three dimensionless numbers

(i.e., Re, We and v) that characterize the binary drop
collision as defined by Eq. (1). Since the (x,y)-plane is

used to represent the colliding drops, the calculations

apply to the coalescence of two infinitely long cylinders.

The initial geometry for both the head-on and off-centre

collision models proposed here is shown schematically in

Fig. 2. The relative motion of the drops is described

in the reference frame in which one of them is at rest.

In this frame, the other drop will approach the one at

rest with a reference velocity equal to the relative veloc-

ity vrel = 2v as measured in the centre-of-mass system.

Computationally, this is accomplished by adding an ini-

tial constant axial velocity vrel to the internal liquid

velocity field of the incident drop. As depicted in Fig.

2(a), a head-on collision refers to the case in which the

relative velocity vector coincides with the centre-to-

centre line (here chosen in the direction of the x-axis),

yielding X = 0 and hence v = 0. A simple off-centre col-
lision model is obtained by shifting the centre of the inci-
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dent drop in the vertical direction a distance equal to its

radius R, resulting in a dimensionless impact parameter

v = 0.5 (Fig. 2(b)). In this particular geometry the colli-
sion angle is identically zero, implying that for any given

choice of the reference velocity, vrel, both the head-on

and off-centre binary drop collision models will be

characterized by the same values of Re andWe. Two se-

quences of seven model calculations each, corresponding

to v = 0 and 0.5, respectively, are defined by taking val-
ues of vrel � 0.360, 0.468, 0.573, 0.662, 0.811, 0.936 and
1.047, which are appropriate for low energy impact col-

lisions with 1.2 6We 6 10.1 and 23.5 6 Re 6 68.4.
4. Head-on binary collision

For 1.2 6We 6 10.1, all head-on collision models re-

sulted in permanent coalescence of the impinging drops.

We recall that in general two drops will coalesce if their

minimum clearance distance reaches a critical value

which is within the range of the intermolecular forces

of the fluid, typically of the order of 100 Å [6]. However,

it is well known that lowWe head-on collisions may also

lead to bouncing, a mechanism in which direct contact is

prevented by the gas film between the drop interfaces

[14]. In contrast with most practical situations, the pres-

ent exploratory model calculations refer only to colli-

sions of liquid drops in a vacuum environment (i.e.,

with zero outer gas pressure) and so we cannot expect

the drops to bounce. This agrees with the experimental

observation that as the surrounding gas pressure is de-

creased in low We head-on collisions of liquid drops,

the outcome of bouncing is suppressed because the pres-

sure buildup within the interdrop film is consequently re-

duced, thus easing rapid drainage of the film and

favouring coalescence [14]. In addition, the drops are

thermally insulated. That is, there is no heat conduction

through the drop surface into the vacuum because there

the thermal conductivity is exactly zero.

In vacuum, where there is no interdrop film, the inci-

dent drops find noway to lose their translational velocities
-48 0 48
x

-48

0

48

y

-48 0
x

t=10 t=12

Fig. 3. Early evolution of the head-on collision model with vrel � 1.047
immediately after contact and its subsequent broadening. In each slid
before contact is established. As a consequence, they come

together, reaching a minimum clearance on their centre-

to-centre line and experiencing negligible hydrodynamic

deformation upon contact, regardless of the impact iner-

tia.When the drops touch, the surface tension forces drive

a flow into the point of contact to form a tiny liquid

bridge. This very early phase is depicted in Fig. 3 for the

We � 10 head-on collision model. The first slide (at
t = 10) shows the precise instant when the drops touch

and the bridge is formed, followed by its subsequent

broadening at t = 12 and 14 (second and third slides,

respectively). Notice that all head-on models start with

the drops separated a distance approximately half their ra-

dius R and so the time of contact tc will differ from model

to model depending on the size of the relative velocity.

The results for this early phase can be compared with

the analytical asymptotic solutions for drop coalescence

derived by Hopper [37] and Eggers et al. [38]. In partic-

ular, Hopper [37] provided a 2D solution for the coales-

cence of two infinitely long cylinders. For the special

case in which the outer fluid is inviscid or absent, he

found that the radius of the small bridge, as measured

in the direction normal to the centre-to-centre line, var-

ies with time according to

rm � rðt � tcÞ
pg

ln
rðt � tcÞ

gR

� �
ð19Þ

and that the flow is driven by a highly curved �meniscus�
of length 2prm and width D � r3m around the bridge,

while the fluid velocity at the meniscus obeys a logarith-

mic dependence on radius given by

vm � � r
pg
ln

rm
R

� �
. ð20Þ

Eggers et al. [38] extended Hopper�s analysis to the
coalescence of two spherical drops. Since the flow within

the bridge is driven by the curved meniscus, they found

that during the early stage of coalescence, the result

should be asymptotically the same as in 2D and hence

Eqs. (19) and (20) should equally apply. Eq. (19) is an

asymptotic statement for t � tc! 0, where t refers to
48 -48 0 48
x

t=14

(We � 10), showing the liquid bridge formed between the drops
e the time is shown in reduced units.
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the evolution time and tc, as defined above, is the time of

drop contact. Its validity rests on the conservative

assumption that the scale D � r3m is smaller than rm so

that the force almost exclusively comes from the menis-

cus. Fig. 4 compares the analytical solution given by Eq.

(19) with the numerically predicted behaviour of rm(t)

for all head-on models. In particular, the best fits with

the analytical solution are obtained when rm 6 0.11R

for the low energy collision models with vrel � 0.360
(We � 1.2) and 0.468 (We � 2). At small radii

(rm! 0), the Reynolds number, Re = qrrm/g
2, is arbi-

trarily small. This together with the large velocity gradi-

ents generated near the meniscus makes the motion there

to be always dominated by viscous effects. This flow

takes place on a time scale given by s = gR/r � 2.56 in
reduced units, which compares fairly well with the time

required by rm to become as large as �0.26 (for

We � 1.2) to �0.52 (for We � 10) times the radius of
the parent drops (see Fig. 4). The bridge broadens at a

faster rate in collisions with higher impact velocities be-

cause of their larger associated Re collision values. For

rm > 0.11R, the numerically calculated rm(t) differs from

Eq. (19). The reason for this is that Eq. (19) is valid only

for drops having negligible velocities of approach before

contact [38]. In fact, Eq. (20) predicts that vm! 0 when

rm! R, which complies with the expectation that in the

absence of sustained internal motion within the com-

bined drop, the free surface can adjust the flow to lessen

the velocity gradients and hinder further motion of the

surface when rm � R.
Fig. 4. Time growth of the bridge radius rm for all head-on

collision models compared with the asymptotic analytic solu-

tion (dashed line) given by Eq. (19). The numbers on the curves

refer to the relative velocity of collision and the corresponding

value of the Weber number to which they belong. All quantities

are in reduced units.
In a recent paper, Yao et al. [39] measured the growth

of the bridge at the onset of coalescence of two highly

viscous, silicon oil drops immersed in a water–alcohol

mixture of the same density in order to avoid the effects

of gravity. They found that for times t/s larger than
about 0.1, where s = gR/r, the bridge radius varies with
time according to the scaling formula rm = Rf(t/s), where
f is some function, while the fluid velocity at the menis-

cus varies linearly with rm. However, they did not pro-

vide experimental data at sufficiently small times (t/

s 	 0.1) and so a direct comparison with the analytical

solution predicted by Eqs. (19) and (20) was not possi-

ble. In addition, their experiments apply to the viscously

dominated limit in which Z� 1 and hence their results

cannot be compared with those in Fig. 4, which applies

to drops with Z � 1.
The details of the long-term evolution up to comple-

tion of the first period of oscillation are displayed in

Figs. 5 and 6 for the vrel � 0.468 (We � 2) and 1.047
(We � 10) models, respectively. Both models evolve in
a qualitatively similar fashion in spite of the difference

in their We values. In either case, as long as rm � R

the bulk of the drops merges. During this stage, nearly

half of the translational kinetic energy of the incident

drop is converted into internal motion, while the other

part, which is of the same magnitude of the centre-of-

mass kinetic energy before the collision, goes as transla-

tional motion of the combined drop. The former results

in two opposite flows within the coalescing drop directed

towards the central plane perpendicular to the x-axis. As

a consequence, a �stagnation-flow� region forms around
this plane in as much as the same way as described by

Jiang et al. [13]. The pressure within this region soon ex-

ceeds the surface tension pressure, causing an outwardly

spreading flow along the y-axis. As this motion pro-

gresses, the overall width of the coalesced drop reduces

with a consequent increase of the rim pressure. This

phase of the evolution is depicted in the top-row slides

of Figs. 5 and 6 for the time intervals 28 6 t 6 114

and 18 6 t 6 86, respectively. The outward motion seen

in the present simulations is the analogous of the out-

wardly radial flow envisaged in actual liquid-drop colli-

sion experiments, which leads to the formation of a

transient dimpled disk [13,14,17,18]. The developed disk

stage corresponds to the elongated shapes displayed in

the last slide of top row in Figs. 5 (t = 114) and 6

(t = 86). These slides clearly show the combined drop

in their largest surface deformation.

The dynamics during this phase of the evolution is

governed by rather strong viscous dissipation. From a

simple energy balance analysis, Jiang et al. [13] inferred

that about half of the internal kinetic energy is lost to-

wards the stage of maximum deformation (see Section

6). Since the magnitudes of the internal velocities change

quicker along the y-axis due to the higher surface ener-

gies involved, fluid motion undergoes stronger viscous
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Fig. 5. Sequence of times showing the evolution of the head-on collision model with vrel � 0.468 (We � 2). In each slide the evolution
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dissipation in this direction than along the x-axis. The

model of Fig. 6, with We � 10 and Re � 68, formed a
thinner disk compared to that of Fig. 5 having lower

We(�2) and Re(�31) collision values. Also, note that
for the former model the disk possesses well-pronounced

concave surfaces on each side around the centre-to-cen-

tre line of the parent drops. Due to the higher initial

kinetic energy for this case, the surface around the

centre-to-centre line continues to move inwards until a

concave surface is formed which then produces adverse

pressures that prevent further inward motion of the sur-

face. This result is in close agreement with previous simu-

lations by Mashayek et al. [23] with the aid of different

numerical techniques, who found that higher collision

values of Re translate into larger surface deformation.

Development of the disk ceases as soon as the rim

pressure first balances and then overcomes the stagna-
tion pressure, causing the disk to contract back under

surface tension. The bottom-row slides of Figs. 5 and

6 show the reverse motion of the surface towards com-

pletion of the first oscillation period. In particular, the

last slides in Figs. 5 (t = 220) and 6 (t = 210) depict

the shape of the coalesced drops close to the end of

the first period by the time the maximum elongation

happens to be along the x-axis. These forms correspond

to the stretched liquid cylinder detected in drop collision

experiments after the disk contraction phase. As in

Mashayek et al. [23], we also find that higher Re colli-

sion values result in more elongated coalesced drops

by the end of the first period of oscillation. The subse-

quent evolution will be governed by a long-term inter-

play between viscous dissipation and conversion into

surface energy of the internal liquid movement, with a

consequent damped oscillatory motion with maximal
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drop elongations alternating between being parallel and

perpendicular to the direction of incidence. This phase

will eventually end with the formation of a circular coa-

lesced drop.

Fig. 7 depicts the velocity field within the combined

drop at four distinct times in the sequence of Fig. 6, as

viewed in the reference frame in which one of the pre-

collision drops is at rest (see Fig. 2(a)). In this frame,

half of the translational kinetic energy of the incident

drop is transformed into internal motion, while the other

half remains in the form of translational motion of the

combined mass as a whole. The top left panel in Fig. 7

shows the flow structure at t = 34, when most of the ki-

netic energy is still confined in the bulk of the incident

drop (right-hand cap). At this time, the maximum veloc-

ity is �1.076vrel. A region of flow transition forms

around the x = 0 plane, where in the central part the

x-directed flow velocity changes from �vrel in the

right-hand cap to almost zero in the left-hand cap and

an outwardly directed flow develops along the y-axis

in the top and bottom extremes of the end caps. The lat-

ter flow is responsible for the further expansion of the

drop towards the point of largest deformation. This

transition region is the equivalent of the �stagnation-
Fig. 7. Velocity field at t = 34 (top left), t = 86 (top right), t = 156 (b

model of Fig. 6, as viewed in the reference frame in which one of the

coalesced drop is vmax � 1.076vrel (top left), vmax � 0.62vrel (top right),
flow� region that forms because of a counterflow directed
towards the x = 0 plane, as seen in the reference frame in

which the centre of mass of the colliding drops is at rest.

The description of the counterflow can be recovered

from the flow pattern in the top left panel of Fig. 7 by

simply adding the constant velocity 1
2
vrel to the negative

x-component of the particle velocities. The top right

panel at t = 86 shows the velocity field close to the point

of maximum deformation. At this time, the velocity vec-

tors point to the left and are all nearly aligned with the

x-axis, indicating the translational motion (v � 0.5vrel)
of the combined drop. The maximum and minimum

velocities are �0.62vrel and �0.46vrel, implying that most
of the undamped internal kinetic energy has been effec-

tively converted into surface energy. The bottom panels

(at t = 156 and 176) pertains to the disk contraction

phase. The inclined arrows in the top and bottom hemi-

spheres show that there is sustained inward motion

along the y-axis. Meantime, expansion of the drop

occurs primarily about the y = 0 plane, where the main

flow is along the x-direction. In the centre-of-mass

frame, this flow will take the form of two opposite flows

along the positive and negative x-directions away from

the drop centre.
ottom left) and t = 176 (bottom right) for the head-on collision

two colliding drops is at rest. The maximum velocity within the

vmax � 0.85vrel (bottom left) and vmax � 0.90vrel (bottom right).
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Fig. 9. Schematic of the off-centre binary collision at the time

of contact, showing the angle (sinh = X/D = v) formed by the
centre-to-centre line and the direction of approach.
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In order to describe the form of the oscillations due

to the drop surface deformation, we choose a planar

coordinate system (x,y) and place it within the drop

by fixing its origin at the location of the drop centre-

of-mass. In this way, the surface deformation can be fol-

lowed by tracking the motion of those surface particles

which are closest to the x- and y-axes. The motion of

these particles along the y- and x-axes is shown in Fig.

8(a) and (b), respectively, for all head-on models. It is

clear from Fig. 8(a) that the higher energy collisions

reach the stage of largest deformation on shorter times

and with larger oscillation amplitudes than the lower en-

ergy models. Larger amplitudes are also seen to occur

along the x-axis for the higher velocity impacts (Fig.

8(b)), implying that the more energetic is the collision,

the thinner is the shape of the combined drop at maxi-

mum deformation and the more elongated will appear

after completion of the first period. This result is consis-

tent with the higher energy impacts pointing towards

higher We and Re collision values. We also note that

due to viscous loss of the internal kinetic energy, the

maximum elongations along the x-axis (at the end of

the first period) are always smaller than those undergone

by the drops along the y-axis at the time of largest

deformation.
5. Off-centre binary collision

In this section, we describe the results obtained for

the evolution of the off-centre collision models for

1.2 6We 6 10.1 and dimensionless impact parameter

v = 0.5, as shown in Fig. 2(b). We may see from Fig. 9

that at the precise instant when the drops touch, their

centre-to-centre line forms an angle with the direction

of the relative velocity vector given by sinh = v. Hence,
the components of the relative velocity parallel and nor-
mal to the centre-to-centre line can be readily calculated

as vl = (1 � v2)1/2vrel and vt = vvrel, respectively. Thus,
for v = 0.5, the longitudinal velocity is vl � 0.87vrel,
while the transverse one is exactly half the magnitude

of the relative velocity. According to the experimental

observations of Jiang et al. [13], the longitudinal compo-

nent is responsible for the coalescence and subsequent

deformation of the combined drop into a plate shape

in a manner similar to the head-on case, while the trans-

verse velocity causes a sliding motion of the impacting

masses and enforces rotational motion of the coalesced

drop as a whole. Since in the present models motion is

constrained on the (x,y)-plane, the combined drop will

rotate about a stable axis normal to the plane and coin-

ciding with its centre of mass.

Figs. 10 and 11 display a sequence of slides for the

time evolution of the off-centre binary collision models

when vrel � 0.468 (We � 2) and 1.047 (We � 10), respec-
tively, so that direct comparison can be made with the

head-on evolutions of Figs. 5 and 6. During the initial

phase, a bridge between the drops forms again at the

point of contact, which then expands in radius in as

much as the same way as described for the head-on



Fig. 10. Sequence of times showing the evolution of the off-centre collision model with vrel � 0.468 (We � 2). In each slide the
evolution time is shown in reduced units.

Fig. 11. Sequence of times showing the evolution of the off-centre collision model with vrel � 1.047 (We � 10). In each slide the
evolution time is shown in reduced units.
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collisions. As the drops merge, half of the longitudinal

kinetic energy carried by the incident drop is converted

into internal motion of the fluid in the form of a coun-

terflow (see Section 6). This results in the rapid forma-

tion of a stagnation-flow region around the central

plane perpendicular to the centre-to-centre line, which

separates the bulk of the coalescing masses. The trans-
verse velocity causes these masses to slide about the stag-

nation plane in opposite directions in an attempt to

break the bridging between them, as shown in the three

last slides of top row in Figs. 10 and 11, where deforma-

tion into a �peanut� mode is already evident. Develop-
ment of the peanut shape is more clearly seen in Fig.

11 because of the stronger transverse inertial forces for
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theWe � 10 case. While part of the sliding motion is re-
sisted by viscous forces due to the shearing flow layer be-

tween the sliding masses, part is transformed into

rotational motion by the action of the surface tension

forces which tend to circularize the drop. The centrifugal

forces associated with rotation of the deforming end

caps sandwiching the stagnation region along with the

outwardly accelerated flow within it, induced by the ini-

tial kinetic energy pertaining to the longitudinal velocity,

flatten the combined drop until a stage of maximum

deformation is reached. This point is achieved at

t = 100 in the low We(�2) collision (Fig. 10) and

t = 84 for We � 10 (Fig. 11), as shown in each figure
by the second slide of middle row. Note that because

of the larger momentum effects associated with the latter

case, the peanut shape has undergone transition into a

rotating dumb-bell mode. A common feature in all

models is that due to the elongated shapes, the centrifu-

gal forces first induce �solid-body� rotation of the coa-
lesced drop about its centre of mass.

The top left and right panels of Fig. 12 show the de-

tails of the flow at t = 36 and 46, respectively, in the evo-

lution sequence of Fig. 11. As in the head-on case (Fig.

7), the internal flow is shown in the reference frame in
Fig. 12. Velocity field at t = 36 (top left), t = 46 (top right), t = 124 (bo

model of Fig. 11, as viewed in the reference frame in which one of the

coalesced drop is vmax � 1.082vrel (top left), vmax � 1.078vrel (top right)
which one of the colliding drops is at rest (see Fig.

2(b)). At these times, the maximum velocity is �1.08vrel
with most of the initial kinetic energy being confined in

the top portion of the combined mass, which contains

the bulk of the incident drop. A region of flow transi-

tion, which separates the bulks of the coalescing drops,

is again present in which strong velocity gradients devel-

op as a result of the coalescence process. Note that the

flow velocity is higher in the top end caps, while the

converse is true in the bottom end caps. This marked dif-

ference in the velocity is responsible for enforcing solid-

body rotation as the combined drop elongates (see Fig.

11). In particular, the bottom left panel (at t = 124) of

Fig. 12 displays the velocity field close to the point of

maximum elongation, when vmax � 0.73vrel and vmin �
0.26vrel. At this point, the drop has completed half of

a revolution period and most of the internal longitudinal

motion has either dissipated or gone into surface energy,

while most of the internal transverse motion (with veloc-

ity �0.25vrel) is in the form of solid-body rotation, as is
clearly evidenced by the flow pattern. In this way, the

combined drop undergoes translational motion in a

direction parallel to the centre- to-centre line at the time

of contact (see Fig. 9), while revolving about an axis
ttom left) and t = 240 (bottom right) for the off-centre collision

two colliding drops is at rest. The maximum velocity within the

, vmax � 0.73vrel (bottom left) and vmax � 0.71vrel (bottom right).
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passing through its centre of mass. Further evidence of

this rotational motion is given in the bottom right panel

of Fig. 12 at t = 240, when the drop has already com-

pleted a full revolution period.

As in the head-on case, drop elongation is halted by

the overwhelming surface tension forces which then pull

the flow back, making the rotating coalesced drop to

oscillate longitudinally for the remainder of the evolu-

tion. The amplitudes of this vibrational mode progres-

sively decay as the internal fluid motion is viscously

dissipated. By about t = 180 (Fig. 10) and 178 (Fig.

11) when the drops have completed a full revolution,

transition to an almost circular shape has occurred. This

mode is the analogous of the oblate shape attained in

real liquid-drop experiments. Evidently, the surface re-

flex flow is much stronger in the We � 10 model, where
rapid deformation of the oblate shape into an elongated

prolate one is seen to occur at t = 240 (Fig. 11). This

elongation would correspond to the stretched cylinders

observed in actual experiments. The subsequent longitu-

dinal vibrations will damp out due to both viscous dissi-

pation and conversion of the internal motion into

surface energy, until a spinning spherical blob is formed.

In passing, we note that during the initial phase of coa-

lescence before the stage of largest deformation, the

internal velocity gradients involved are large enough to

make viscous dissipation to be essentially independent

of the coefficient of shear viscosity, g. However, after
the point of maximum elongation the velocity gradients

associated with the surface reflex flow are considerably

smaller and so loss of the internal kinetic energy depends

more strongly on the rheological properties of the fluid

through the coefficients of surface tension and shear vis-

cosity. In the transition towards sphericity both viscous

and surface tension forces also contribute to damping of

the angular momentum (see Section 6). As the coalesced

drop becomes circular, the rotational motion appears in

the form of spin angular momentum of the blob about

its axis of symmetry. Shearing motion between adjacent

rotating layers will then ultimately contribute to further

damping of rotation by viscous dissipation.

The longitudinal oscillations of the coalesced drop

have been monitored by following the drop surface mo-

tion in a frame co-rotating with the liquid. The results of

this motion are similar to those displayed in Fig. 8(a)

and (b) for the head-on models, except that in this case

the amplitudes of the oscillations are smaller.
6. Energy dissipation

The collision of two liquid drops is a perfectly inelas-

tic process in which the drops combine to form a bigger

one. In the reference frame in which one of the drops is

at rest (Fig. 2), the total (translational plus internal)

kinetic energy before the collision is simply K0 ¼
1
2
Mv2rel þ 2K int;0, whereM is the mass of the incident drop

and Kint,0 is the kinetic energy due to the internal macro-

scopic motion. In all models considered here the initial

drop configuration is close to mechanical equilibrium

(see Fig. 1(b)) and therefore K int;0 	 1
2
Mv2rel. After a

head-on collision, the combined drop undergoes transla-

tional motion in the direction of incidence with a veloc-

ity (1
2
vrel) equal to that of the centre of mass before the

impact. Therefore, the total kinetic energy after the col-

lision is K ¼ 1
4
Mv2rel þ K int, where Kint is the amount of

the translational kinetic energy which is transformed

into internal motion. Conservation of the total energy

then yields

K int þ U ¼ 1
4
Mv2rel þ 2 K int;0 þ U 0ð Þ; ð21Þ

where U0 and U are, respectively, the internal energy be-

fore and after the collision. Since the right-hand side of

Eq. (21) is a constant, d(Kint + U)/dt = 0, implying that

any change in Kint must be balanced by a corresponding

opposite change in U. Under the assumption of fluid

incompressibility (ovk/oxk = 0), Eqs. (2)–(4) can be writ-

ten as

dK int
dt

¼ � 1
2
g
Z

ovi

oxj
þ ovj

oxi

� �2
ðdxÞd �

I
p~v �~nðdxÞd�1

þ
I

~v �~rð Þ �~nðdxÞd�1; ð22Þ

dU
dt

¼ 1
2

g
Z

ovi

oxj
þ ovj

oxi

� �2
ðdxÞd �

I
jrT �~nðdxÞd�1;

ð23Þ

where in two-space dimensions d = 2 and~n is a unit vec-
tor normal to the surface (contour) bounding the liquid

drop. The first two integrals on the right-hand sides of

Eqs. (22) and (23) show that the internal kinetic energy

lost per unit time due to viscous dissipation in the bulk

of the drop is converted into heat. The surface integral in

the second term of Eq. (22) is the work done by pressure

forces on the liquid within the free surface. It accounts

for the conversion of the internal kinetic energy into sur-

face tension energy and vice versa. The surface integrals

in the last terms of Eqs. (22) and (23) represent the time

variations of the internal kinetic and specific internal

energies due to internal friction and heat conduction

within the free surface, respectively.

In the present simulations, the total energy before

and after the collision is very well conserved, implying

that the surface integrals in Eqs. (22) and (23) must

approximately balance. Fig. 13(a) and (b) displays the

time evolution of the total kinetic (K) and total internal

(U) energy, respectively, for the head-on collision mod-

els. Since the translational kinetic energy of the com-

bined drop ð1
4
Mv2relÞ is a constant, the time variation of

K as shown in Fig. 13(a) reflects the actual time varia-
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tion of the internal kinetic energy Kint. When the drops

reach a minimum clearance distance, their surfaces

around the point of contact slightly deform due to the

cohesive forces between nearby fluid molecules. As a re-

sult a tiny bridge connecting the drops forms. During

this initial stage (see Fig. 3), the highly curved meniscus

around the bridge drives a rapid flow in the direction

perpendicular to the centre-to-centre line, making the

bridge to broaden and the kinetic energy to rise steeply

over its constant value, K0, before the collision (Fig.

13(a)). Because of the large velocity gradients generated

within the expanding bridge, the rate of increase of K

soon slows down due to the overwhelming effects of vis-

cous dissipation. This leads to a maximum in K. At this

point the contribution of the first and third terms of Eq.

(22) is balanced by that of the second term and so dKint/

dt = 0 momentarily.

The converse occurs for the internal energy which

drops steeply reaching a minimum value (Fig. 13(b)).
The time scale for viscous heating due to internal fric-

tion within the bridge ðsvis � qur2m=2gv
2
mÞ is much longer

than the conducting time ðscon � qur2m=jTmÞ. Choosing
vm and Tm as appropriate mean values of the velocity

and temperature at a time before the occurrence of the

maximum in K, we obtain that scon/svis 6 0.015. Thus,
heat is conducted away from the bridge region faster

than it is being produced by internal friction, leading

to a steep decrease of the internal energy. The maxima

in Fig. 13(a) correspond to increments of the total

kinetic energy ranging from �8% (for We � 10) to
�92% (for We � 1.2) of the constant value, K0, before
the collision. However, the size of the increments

(DK = Kmax � K0) has only a weak dependence on the

impact inertia. In particular, DK � 115 for We � 1.2
and DK � 88 for We � 10. In the We � 10 collision
model, the maximum in K occurs when the radius of

the bridge is rm � 0.58R (third slide of Fig. 3 at

t = 14), while in theWe � 2 case it happens when rm � R

(second slide of Fig. 5 at t = 38). In addition, we note

that the widths of the �uphill� and �downhill� peaks in
K and U, respectively, decrease for head-on collisions

with higher We as a result of the higher Re collision

values associated with them.

In all models, as long as rm � R, further outward mo-

tion of the combined drop surface along the y-axis is

accompanied by inward motion of the surface along

the x-axis. During this phase, the rapid drop of the ki-

netic energy is primarily caused by viscous dissipation

within and around the stagnation region. In particular,

the mean of the y-velocity component increases mono-

tonically until it reaches a maximum value, which in re-

duced units, is between �0.17 (for We � 1.2) and �0.29
(forWe � 10) by the time about 13% and 25% of the to-
tal kinetic energy has been lost, respectively. Thereafter,

the mean y-velocity decreases almost linearly in time

until it vanishes. At this point, most of the undamped

internal motion has been changed into surface energy

and so the kinetic energy reaches a minimum as seen

in Fig. 13(a). In this process the internal energy increases

as a result of the excess heating produced by the internal

friction in the bulk and near the free surface of the drop

(Fig. 13(b)). From Eq. (23) we may see that part of this

heating is balanced by heat conduction, thus causing the

rate of increase of the internal energy to slow down and

vanish at the same time when K reaches its minimum va-

lue. This point marks the state of maximum drop defor-

mation seen in the last slide of top row in Figs. 5 and 6.

At this time the rim pressure which is of the order of r/b,
where b is the length of the drop along its elongation,

balances the stagnation pressure (Kint). More than half

of the total kinetic energy is lost towards this stage

(�67% for We � 1.2 and �51% for We � 10). This re-
sult is consistent with the estimate of 50% loss predicted

by Jiang et al. [13] through a simple energy balance anal-

ysis. In particular, most of the viscous loss occurs within
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the stagnation region (along the y-axis) where the veloc-

ity gradients are larger (see the top left panel of Fig. 7).

Only a small amount of viscous dissipation is indeed in-

volved in the spreading rim region because there the free

surface can adjust the flow to lessen the velocity gradi-

ents, especially for large values of the velocity. Also,

note that heat conduction works all the way to equalize

the temperature within the drop. This explains why the

mean drop temperature rises only mildly during the

evolution, while the internal energy increases towards

the point of largest deformation, where it reaches a

maximum.

As soon as the rim pressure exceeds the stagnation

pressure, the surface tension forces drive a reflex flow

which causes the drop to contract back along the y-axis

(see bottom panels of Fig. 7). As a consequence, the ki-

netic energy increases and reaches a new maximum by

the time when the drop makes a transition to a nearly

circular shape (see third slide of bottom row in Figs. 5

and 6). At this point the effective kinetic energy is from

�60% (forWe � 1.2) to �65% (forWe � 10) of the cor-
responding value at the first maximum. During this

stage, the internal energy decreases because thermal

conduction proceeds faster than heat production by

internal friction in the bulk. When the contribution of

these concurring effects balance, U attains a minimum

which again coincides with the appearance of a maxi-

mum in K. Thereafter, the drop departs from its circular

shape and expands along the x-axis towards completion

of the first period of oscillation (see last slide of bottom

row in Figs. 5 and 6). At this time the increasing rim

pressure halts further expansion of the drop and so the

kinetic energy reaches a new minimum as opposed to

the internal energy. During this stage from �52% (for

We � 1.2) to �27% (for We � 10) of the kinetic energy
is lost. The oscillatory behaviour of K and U will con-

tinue in time with progressively lower amplitudes until

eventually Kint! 0, or equivalently K ! 1
4
Mv2rel.

For the off-centre collision geometry shown in Fig.

2(b), the total kinetic energy before the collision can

be written as K0 = Kl,0 + Kt,0 + Kint,0, where K l;0 ¼
1
2
Mð1� v2Þv2rel and K t;0 ¼ 1

2
Mv2v2rel are, respectively, the

longitudinal and transverse components of the transla-

tional kinetic energy carried by the incident drop. Note

that Kl,0 > Kt,0 for impact parameters v < 1=
ffiffiffi
2

p
. For the

particular case in which v = 0.5, we have that

Kl,0 = 3Kt,0. After the collision, the total kinetic energy

is K ¼ 1
4
Mv2rel þ K int;l þ K int;t, where Kint,l and Kint,t are

initially the internal kinetic energies pertaining to the

longitudinal and transverse (rotational) components of

the velocity. Fig. 14(a) and (b) displays the time varia-

tion of the total longitudinal ½K l ¼ 1
4
Mð1� v2Þv2relþ

K int;l� and transverse ðK t ¼ 1
4
Mv2v2rel þ K int;tÞ kinetic

energies for the off-centre collision models. The time

evolution of the internal energy is similar to that de-

picted in Fig. 13(b) for the head-on cases, and hence it
will not be shown explicitly here. As before, since
1
4
Mð1� v2Þv2rel and 1

4
Mv2v2rel are constant, the time varia-

tions of Kl and Kt intrinsically reflects those of Kint,l and

Kint,t, respectively.

A comparison of Figs. 13(a) and 14(a) clearly shows

that the longitudinal kinetic energy in an off-centre col-

lision varies with time in a qualitatively similar manner

to the total kinetic energy in a head-on collision. This

agrees with the experimental observations that the longi-

tudinal component of the relative velocity is responsible

for drop coalescence in as much as the same way as seen

in a head-on collision [13]. However, the oscillations of

Kl (Fig. 14(a)) and Kt (Fig. 14(b)) look much more irreg-

ular because of non-linear hydrodynamical coupling be-

tween the longitudinal and transverse (rotational)

components of the internal motion. At the very begin-

ning, the transverse kinetic energy rises steeply because

of the rapid flow which develops within the expanding
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bridge. When its radius becomes as large as that of the

parent drops, viscous dissipation of the transverse mo-

tion makes Kt to stop rising and then oscillate by the

time the drops undergo sliding motion about the stagna-

tion plane (see slides of top row in Figs. 10 and 11).

Thereafter, Kt decreases steeply because of the enhanced

viscous dissipation due to shearing motion between the

sliding masses and conversion of the transverse motion

into surface tension. The increasing tensional forces halt

further sliding motion and enforces solid-body rotation

of the combined drop (see slides at t = 54 and 66 of

Fig. 10, at t = 46 and 54 of Figs. 11 and 12). During this

stage from �75% (We � 1.2) to �64% (We � 10) of Kt is
effectively lost until a minimum is reached at the time of

largest drop deformation, corresponding to the shapes

shown at t = 100 in Fig. 10 and t = 84 in Fig. 11. Mean-

while, the longitudinal movement which is mainly

responsible for the elongated shape is viscously dissi-

pated at a slower rate because of the milder velocity gra-

dients involved in the counterflow along the direction

of the centre-to-centre line. A decrease from �65%
(We � 1.2) to �54% (We � 10) in Kl is depicted in Fig.

14(a). The minima of Kl are slightly shifted in time with

respect to those of Kt and approximately coincide with

the shapes shown at t = 130 and 124 in Figs. 10 and

11, respectively. At this time in the evolution, the mean

longitudinal velocity approximately vanishes implying

that complete balance between the rim pressure and

the stagnation pressure is achieved.

Starting from the first slide of middle row in Figs. 10

(at t = 66) and 11 (at t = 54), the time variation of Kt in

Fig. 14(b) fits that of the rotational kinetic energy, while

that in Fig. 14(a) gives the variation of the longitudinal

(vibrational) component responsible for the alternating

drop elongations. Note that around the point of largest

elongation, the united drop experiences almost solid-

body rotation about an axis perpendicular to the plane

of the slides and coinciding with the drop centre-of-

mass. This explains the further sudden rise of Kt for

all models. In the meantime, the drop contracts back

along its major axis with a consequent increase of Kl.

Note that in the low We (<2) evolutions, the increase

of Kl is only mild because most of the longitudinal mo-

tion has already been dissipated towards the stage of

largest deformation. As a consequence, the further evo-

lution is characterized by the drop undergoing mild

elongations about a circular shape. In this way, most

of the initial solid-body rotation is transformed into spin

rotation of the drop. Viscous dissipation due to shearing

motion between adjacent rotating layers causes the spin-

ning to slow down, as shown in Fig. 14(b) by the lower

oscillation amplitudes of Kt at long times for the

vrel 6 0.811 (We 6 6) models. The converse is true for

the higher energy impacts (vrel P 0.936 and We P 8),

where the amplitudes of the oscillations remain almost

undamped. This is a consequence of the stronger longi-
tudinal inertial forces for the higher We cases, which

make the coalesced drop to alternate between more elon-

gated shapes. Therefore, only a little amount of the rota-

tional energy is dissipated as the evolving drop

experiences primarily solid-body rotation. In fact, the

rate of change of the rotational energy increases just be-

fore and after the stages of largest elongation when the

drop rotates almost rigidly (see Fig. 11). As long as it

contracts back, making a transition to a circular shape

before re-expanding, it passes through a sequence of less

elongated shapes in which �65% of the kinetic rota-

tional energy is lost as the solid-body rotation goes into

the form of spin. During drop contraction, part of the

reflex flow is in the form of additional rotational motion.

In particular, this additional rotational energy supplies

most of the losses by viscous dissipation in the

vrel P 0.936 cases (see Fig. 14(b)). This result implies

that dissipation of the rotational motion strongly de-

pends on the impact inertia, and hence on the rate of dis-

sipation of the longitudinal (vibrational) component of

the velocity which determines the subsequent drop

elongations.
7. Comparison with existing experimental and

numerical results

There has been considerable effort to understand the

events that occur when two drops collide. Most experi-

mental work on the drop collision phenomena has been

motivated by meteorological interest and applications to

combustion spray systems. Therefore, attention has been

focused on the collision behaviour of water drops at

ambient pressures and hydrocarbon drops at both ambi-

ent and higher pressures. In addition, experiments of

binary drop collision in a vacuum environment have

been conducted by Willis and Orme [17,18]. Unlike

experiments involving droplet collisions in a background

medium, the later approach allows for studying the fluid

dynamics of the collision decoupled from aerodynamic

effects that would otherwise cause distortion or even dis-

integration of the coalesced mass. In particular, Willis

and Orme [17,18] investigated the head-on binary colli-

sion of equal-sized, viscous drops with varied diameters

and viscosities for Weber numbers in the range

355 <We < 4046. Since the present calculations apply

only to lowWe collisions, we cannot enforce direct com-

parison with their experimental results. However, the

trends shown in the sequences of Figs. 5 (for We � 2)
and 6 (for We � 10) up to t = 180 and 176, respectively,
compare favourably well with their edge-on digital

images of a binary collision sequence (see Fig. 5 of [17]

and Fig. 6 of [18]) showing the coalesced drop deforma-

tion during the first half of the oscillation for a We =

1560 collision, where the combined drop deforms into

a flat circular disk before relaxing into an approximate
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spherical shape. The remainder of the drop evolution

shown in Figs. 5 and 6 also reproduces the second half

of the oscillation characterized by a prolate drop geom-

etry (at t = 220 in Fig. 5 and 210 in Fig. 6), correspond-

ing to the t = t3p/2 time in the image sequences of [17,18].

AsWe is increased from �2 (Fig. 5) to �10 (Fig. 6), the
magnitude of the maximum deformations (flat disk and

prolate cylinder) increases monotonically, which is in

agreement with the experimental observations of Willis

and Orme [17,18]. In passing, we note that similar evo-

lution shapes to those shown in Figs. 5 and 6 for the

head-on collisions and in Figs. 10 and 11 for the off-cen-

tre collisions were also reported by Jiang et al. [13] and

Qian and Law [14] in experiments involving the collision

of water and hydrocarbon drops at atmospheric air.

In order to gain insight into the dynamics of the

deformation process, we have also plotted in Fig. 8(a)

and (b) the position of the spreading rim as a function

of time for all head-on model calculations. In particu-

lar, Fig. 8(a) depicts the amplitude of deformation

close to the y-axis. These curves are the analogous of

those shown by Willis and Orme [18] for the radial

expansion of the rim with time. Comparing Fig. 8(a)

with their experimental curves reveals that the form

of the oblate deformation cycle is relatively invariant

with Weber number. As expected, higher deformation

amplitudes correspond to more energetic collisions.

For the low We collisions studied here, the maximum

of the amplitude is shifted to the left as the Weber

number is increased, implying that the deformed coa-

lesced drop reaches the point of maximum deformation

at slightly longer times in collisions with lower values

of We. The experiments of Willis and Orme [18] show

that as long as the Weber number is increased to very

high values, the amplitude maxima occur at essentially

the same time because of the increased inertial forces.

The present calculations are also in good agreement

with the linearly correlated experimental data obtained

by Jiang et al. [13], which shows that about half of the

pre-collision kinetic energy is lost in the deformation

process towards the disk-like stage due to viscous dissi-

pation and conversion of the internal motion into sur-

face energy.

Previous theoretical and numerical investigations of

drop behaviour have almost all been concerned with

either the oscillations of a single drop or the collision

of one drop with a flat wall. Numerical simulations of

the collision of two drops are indeed very limited

[20,21,23,24]. In particular, Nobari et al. [21] studied

the head-on collision of equal-sized, axisymmetric drops

immersed in an ambient fluid of much lower density and

viscosity. They found that for varied Weber (13 6

We 6 112) and Reynolds (28 6 Re 6 123) numbers, the

colliding drops always bounced because of the inability

of their scheme to follow the rupture of the double inter-
face upon drop contact. Only when rupture is allowed

by artificially removing the double layer at prescribed

times, do the drops coalesce permanently for Re < 100

regardless of the We value. Temporary coalescence fol-

lowed by reflexive separation was obtained for

Re > 100 provided that We > 60. For the lower We col-

lisions, the shape evolution is very similar to that shown

in Figs. 5 and 6. However, for fixed values ofWe and Re

the extent of maximum deformation was seen to depend

on the prescribed rupture times in the sense that the

smaller is the rupture time, the thinner is the disk

formed. In particular, forWe = 65 and Re = 140 the pre-

dicted outcome is doubtful because when rupture is at

an early time, the combined drop breaks up into two

drops during its prolate regime, but when the rupture

occurs at a later time permanent coalescence occurs.

The head-on collision of equal- and non-equal-sized

drops in a vacuum environment was studied by Mash-

ayek et al. [23] for We = 1 and 3 6 Re 6 60. In particu-

lar, the time resolved shape evolution for Re = 30 (see

their Fig. 2(b)) strongly resembles that depicted in Fig.

5 for We � 2 and Re � 31. They found that for higher
Re, the coalesced drop results in larger surface deforma-

tion during the oblate regime and in more elongated cyl-

inders in the prolate cycle, as we can see by comparing

their evolution with Re = 60 (their Fig. 2(c)) with Fig.

6 for We � 10 and Re � 68. However, because of the
higherWe for the evolution of Fig. 6, the surface around

the centre-to-centre line at the point of largest deforma-

tion (t = 86) appears to be less concave at the expense of

a more elongated shape compared to their Fig. 2(c) at

t = 1.270. Also, the deformation amplitudes for different

Reynolds numbers in their Fig. 3 compare reasonably

well with those displayed in Fig. 8 for varied We and

Re, implying that the form of the oscillations is more

sensitive to variations of Re than to variations of We.

In a more recent paper, Inamuro et al. [24] calculated

the collision of two liquid drops in a gas phase at

Re = 2000 for varied Weber numbers (20 <We < 80)

and impact parameters (0 6 v < 0.82). For the case in
which We = 20.2 and v = 0, they obtained permanent
coalescence following a shape evolution very similar to

that shown in Fig. 6. Because of the rather large density

ratio (=50) of the liquid to the ambient gas employed in

their simulations, extrapolation of their results to lower

values of We predicts an outcome of permanent coales-

cence regardless of the impact parameter, in good agree-

ment with the results of the present calculations for an

infinite density ratio. Although direct quantitative com-

parisons cannot be done with other existing simulations,

several of the observed trends seem to be similar in spite

of differences in the initial parameters and numerical

techniques employed, implying that the SPH method is

an alternative and promising numerical scheme for sim-

ulating the dynamics of colliding drops.
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8. Conclusions

In this paper we have presented exploratory numeri-

cal simulations of the head-on and off-centre binary col-

lision dynamics of equal-sized van der Waals liquid

drops using the method of SPH. Only the outcome of

coalescence for low energy impact collisions with Rey-

nolds and Weber numbers in the ranges 23 6 Re 6 68

and 1 6We 6 10, respectively, is studied. In particular,

the effects of varying the relative velocity and the impact

parameter (v = 0 for head-on and v = 0.5 for off-centre
collisions) on permanent coalescence is investigated by

following the oscillations of the combined drop configu-

ration for more than a period.

The simulations apply to coalescence of two infinitely

long cylindrical liquid drops in a vacuum environment.

Therefore, their surfaces experience negligible hydro-

dynamic deformation upon contact, regardless of the

impact inertia. When a minimum clearance distance is

attained, a tiny liquid bridge connecting the incident

drops and bounded on both sides by a highly curved sur-

face, resembling a meniscus, suddenly forms. The high

surface energy around the meniscus drives a rapid flow

in the direction perpendicular to the centre-to-centre line

which causes the bridge to broaden and the internal ki-

netic energy to rise steeply. For both the head-on and

off-centre collision models studied here, the bridge

broadens at a faster rate in collisions with higherWe be-

cause of their higher associated values of Re. During this

stage, the overwhelming viscous forces due to the large

velocity gradients developed within the meniscus region

soon balance the action of the surface tension forces. As

a consequence, the kinetic energy stops rising and

reaches a maximum value after which it starts decreas-

ing. The increase of the kinetic energy is accompanied

by a corresponding decrease of the internal energy. This

occurs because the heat produced by internal friction

within the bridge is efficiently fluxed by thermal conduc-

tion into the bulk of the coalescing drops. The balance

of this concurrent effects makes the internal energy to

achieve a minimum at exactly the same time when the

internal kinetic energy reaches a maximum.

In all head-on collisions, when the radius of the bridge

becomes as large as that of the incident drops, a stagna-

tion-flow region forms about the bridging due to conver-

sion of half of the translational kinetic energy into

internalmotion in the formof a counterflow. The pressure

within this region soon exceeds the rim pressure, causing

an outwardly spreading flow perpendicular to the direc-

tion of incidence. As a consequence, the combined drop

elongates towards a state of maximum deformation,

which is the exact analogous of the transient flattened disk

observed in actual liquid-drop collision experiments. To-

wards this stage from �67% (for We � 1) to �51% (for
We � 10) of the kinetic energy is lost by viscous dissipa-
tion and conversion of the internal motion into surface

energy. The simulations also predict more elongated

shapes after coalescence in collisions with higher impact

inertia (higher We and Re), which complies with the re-

sults of previous simulations that higher collision values

of Re translate into larger surface deformation. As the

rim pressure exceeds the stagnation pressure, the surface

tension forces drive a reflex flow which causes the drop

to contract back and make a transition into a circular

shape by the time the kinetic energy reaches a maximum.

Further motion continues with the drop re-expanding

along the direction of incidence towards a new stage of

maximum elongation by the end of the first oscillation

period. At this point the kinetic energy reaches a newmin-

imum. The subsequent evolution will be governed by a

long-term interplay between viscous dissipation and con-

version of the internal liquid movement into surface en-

ergy, with a consequent damped oscillatory motion

until a stable circular drop is formed.

In the present off-centre collision models, the value of

the impact parameter (v = 0.5) is such that the magni-
tude of the longitudinal component of the translational

kinetic energy is always three times larger than that of

the transverse component. This occurs because the lon-

gitudinal component of the relative translational veloc-

ity is
ffiffiffi
3

p
times that of the transverse component for

v = 0.5. In this way, the longitudinal component is pri-
marily responsible for the coalescence and subsequent

deformation of the combined drop into a plate shape

as in the head-on collision models. As long as the bridge

connecting the drops expands in radius, the transverse

component causes the bulk of the coalescing drops to

slide in opposite directions in an attempt to break the

bridging between them. However, viscous dissipation

due to shearing motion between the sliding masses helps

the tensional bonding forces at the bridged part to resist

the breaking and enforce centrifugal motion of the end

caps of the coalescing drops. This results in solid-body

rotation of the combined drop as it elongates. At the

stage of maximum drop elongation, the models predict

that from �65% (for We � 1.2) to �54% (for We �
10) of the longitudinal kinetic energy is lost. Dissipation

of the rotational energy will strongly depend on the im-

pact inertia. In particular, whenWe 6 6 most of the lon-

gitudinal motion is dissipated towards the stage of

maximum deformation thus leaving the drop to undergo

only mild elongations about a circular shape towards

completion of the first revolution period. In this process

most of the solid-body rotation is changed into the form

of spin rotation. Viscous dissipation due to shearing mo-

tion between adjacent rotating layers will ultimately

damp out the rotational energy. Conversely, when

We P 8 the combined drop oscillates while experiencing

substantially more elongated shapes, thus favouring

solid-body rotation and hence little dissipation of the
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rotational motion. This result clearly implies that dissi-

pation of rotation after coalescence in off-centre colli-

sions strongly depends on the rate of dissipation of the

longitudinal motion. Although the present calculations

apply to the coalescence of two infinitely long cylinders,

the predicted shape evolution during and after coales-

cence strongly resembles the edge-on images envisaged

in real experiments involving the collision and coales-

cence of spherical drops.
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